A Python-Based Design-by-Contract Evolutionary
Algorithm Framework with Augmented Diagnostic
Capabilities

Ashwin Panchapakesan®, Graduate Student Member, Rami Abielmona’, Senior Member, IEEE, and
Emil Petriut, Fellow, IEEE
*School of EECS, University of Ottawa, Ottawa, Canada
TResearch & Engineering, Larus Technologies Corporation, Ottawa, Canada
1School of EECS, University of Ottawa, Ottawa, Canada
*apanc006 @uottawa.ca, 'rami.abielmona@Ilarus.com, *petriu@eecs.uottawa.ca

Abstract—Evolutionary algorithms are a class of algorithms
that try to mimic natural, biological evolution a la Darwinian
natural selection, to compute solutions to a given problem. They
are especially useful when no well known strategies for computing
solutions to such a problem exist. Evolutionary algorithms begin
by creating a collection (population) of candidate solutions to the
problem at hand; and through repeated application of genetic
operators such as crossover and mutation, they iterate over
multiple generations of this population, until they eventually con-
verge onto an attractive solution. One important problem facing
code implementing Evolutionary Algorithms is that due to the
dynamic nature of the individual chromosomes in a population,
simple coding errors lead to complex bugs that are difficult
to both diagnose and debug. This problem is only exacerbated
when attempting to develop the algorithms in a dynamically
typed language such as Python. This paper presents a novel
Evolutionary Algorithm framework for the Python programming
language that implements design-by-contract, a paradigm in
which each function and class must follow a contractual set of
pre-conditions and post-conditions. Failure to follow the contract
causes an error condition identifying the violated clause, thereby
catching bugs earlier in the development process and in a more
descriptive manner.

Keywords—evolutionary algorithm, design-by-contract, python
programming language

I. INTRODUCTION

VOLUTIONARY algorithms (EAs) are a class of al-

gorithms that try to mimic natural, biological evolution
a la Darwinian natural selection, to compute solutions to a
given problem. They are especially useful when no well known
strategies for computing solutions to such a problem exist.
Though these algorithms have been studied since the 1950s
[1], it wasn’t until John Holland’s work in the early 1970s
that they gained popularity [2].

EAs begin by creating a collection (population) of random
potential solutions (chromosomes). Over time, chromosomes
in the population are selected in a manner proportional to
their “fitness”! for crossover and mutation operations. These

'a measure calculated by an objective function, reflecting how well the

chromosome would solve the problem at hand

operations have the effect of combining the best solutions with
each other in order to find (i.e. generate) better solutions over
time. It is through the application of these operators that the
population evolves into the next generation.

A recurring problem facing code implementing EAs is that
due to the dynamic nature of the individual chromosomes in
a population, it is far too simple to introduce bugs into source
code. This problem is only exacerbated when attempting to
code EAs in a dynamically typed language such as Python,
whose design philosophy is, that as many expressions in code
as possible should compute to some meaningful result or other.
This is to say that one of Python’s design decisions is to
try to interpret the developer’s code in some meaningful way,
which may or may not be what the developer intended. Still,
these design decisions do not take anything away from the
deterministic nature of Python, keeping the language and its
behaviors deterministic. [3].

As a result, most of the errors that a programmer sees when
building or using a genetic framework in Python are far too
cryptic?, despite Python’s excellent error reporting features.
The reason for this is that any error that Python reports is
due to an expression that it is unable to compute. This does
not give the programmer much insight as to which part of
the framework caused such an error. Debugging such an error
requires spending time analyzing different components of the
population as they undergo genetic operations and examining
the output - a task that becomes intractable when population
sizes increase. Further, since EAs rely heavily on chance?,
problems are not easily reproduced.

Thus, a more thorough debugging tool is required. This is
solved with the use of the design-by-contract (DbC) paradigm.
This is done by applying an existing DbC model checker
(called PyContract [4]) to an existing, open-source EA frame-
work [5] in order to improve the usability of the frame-

>The error message AttributeError: ’list’ object has no
attribute ’chromosomes’ is perfectly reasonable and well written.
However, in the context of an EA, it is very unclear which part of the code
is causing this error.

3Typically, crossover occurs with high probability and mutation occurs with
low probability

work. The framework allows programmers to write their own
functions for genetic operators, population initialization, etc.
Applying DbC to this framework would ensure that problems
in the design of an EA (that are to be implemented using this
framework) such as improper mutation or crossover operators
would be caught before the evolution proceeds any further.
Thus, any unfavorable outcome evolutionary results can be
isolated down to the evolutionary parameters, declaring the
source code bug-free (assuming that the contracts are written
correctly).

The rest of this paper is organized as follows:

Sec. II provides a broad overview of some existing Python
based frameworks for the development of various types of
evolutionary algorithms. Sec. III introduces a problem and a
solution to that problem that will be used to demonstrate the
herein developed software package. Further, Sec. IV introduces
the concept of design-by-contract and Sec. V presents two
frameworks that implement it in Python. Finally, some results
are shown and discussed in Sec. VI and some improvements
are suggested in Sec. VIL.

II. PREVIOUS WORK

There are several frameworks geared towards the devel-
opment of EAs in Python [6], [7], [8]. However, many of
these frameworks suffer from not being very extensible, i.e.
it is not always easy to solve a member of a new family of
problems with an EA using that framework. Further, all of
these frameworks suffer from the problem discussed in section
I, namely that the framework provides no easy methodology to
debug any evolutionary algorithm developed using it. Design-
by-contract is one way of supplementing Python’s native error
reporting to assist with the debugging process. In this work,
a Genetic Algorithm (GA) is used as the EA of choice for
implementation within the developed framework.

III. A GENETIC ALGORITHM TO SOLVE THE TRAVELING
SALESMAN PROBLEM

A GA to solve the Traveling Salesman Problem (TSP), on
the well known Berlin-52 map [9], [10] (which contains 52
cities), is used to demonstrate parts of the herein developed
software framework.

The GA begins by generating an initial population of
random tours for the traveling salesman (as described in Sec
III-A). Once this initial population is created using well-
defined initialization parameters (e.g. population size, indi-
vidual size, etc.), it selects individuals to probabilistically
crossover and mutate, thereby making child individuals, which
make up the next generation of this population. Repeating
this process of selection (which is typically dependent on
individual fitness *), crossover and mutation over several
generations allows the GA to converge on an optimal solution.

4The fitness function used in GA is described in Sec III-B

A. An Individual

Within a GA, individuals are made up of one chromosome.
This chromosome is made up of a list of 52 integers, each
one representing a city on the map. In order for an individual
to represent a feasible solution in the solution space, the
chromosome is an ordered list, containing a permutation of
{0,1,2,...,51}, thus making it a valid tour for the TSP.

B. Fitness of an Individual

Since the optimal solution for this problem is an individual
whose tour length is minimal, the fitness of each individual
could be the length of the tour it encodes. However, since the
goal is to maximize the fitness, a better fitness measure of
an individual would be the negative of the length of the tour
the individual encodes. This can be easily computed under the
following assumptions:

1) Each of the 52 cities on the map is represented as a

point on the zy plane

2) 'There is a straight line (i.e. road) connecting every pair

of the 52 cities on the map
Thus, the fitness of an individual can be computed as shown
in eq. 1

50
fitness = —dist(citysy, cityy) — Z dist(citye, cityei1)

c=0
(H
where
dist(c;, c;) = \/(city;.x — city;.x)? + (city;.y — city;.y)?

C. Selecting Individuals

In order to create new individuals out of existing individuals,
two are selected for crossover and mutation operations. The
selection mechanism is fitness proportional, meaning that indi-
viduals with higher fitness values are selected more often than
individuals with lower fitness values. A tournament selection
scheme [11] was used in this GA. In this scheme, tournSize
many individuals are selected at random from the population
and the numWinners fittest of these individuals are selected
for the crossover operation. The values used for tournSize and
numWinners are detailed in Sec. VI.

D. Crossover

A crossover is an operation that takes two parent individuals
and creates a new child individual, whose chromosomes are
comprised of parts of the corresponding chromosomes from
both parents. In the case of the TSP, one possible crossover
function is defined as follows:

1) Select points A and B such that 0 < A < B < 51

2) Create an empty child chromosome which is intended to
hold 52 cities (i.e. a new tour for the traveling salesman)

3) Copy over all the cities between points A and B in the
tour represented by parent; into the child chromosome

4) Copy over all the cities before point A and after
point B in the tour represented by parents into the

corresponding location in the child chromosome, as
long as the city does not already exist between points
A and B in the child chromosome.
5) Fill in the remaining cities in the child chromosome
based on the order in which they appear in parent;.
6) Insert this child chromosome into a new individual -
the child individual of the crossover.

Note that it is imperative that the child individual of a crossover
represent a feasible solution so as to ensure that the GA does
not create individuals that are outside the solution space.

E. Mutation

A mutation is an operation that slightly changes an indi-
vidual. One possible mutation is to swap the positions of two
cities in the tour. Another possible mutation is to reverse the
order of the cities in one contiguous part of the tour.

Again, note that it is imperative that a mutated individual
must still represent a feasible solution so as to ensure that the
GA does not create individuals that are outside the solution
space.

IV. INTRODUCING DESIGN-BY-CONTRACT
A. The Design-by-contract Principle

Design-by-contract (DbC) is the principle that interactions,
between modules of a software system, should be governed by
precise specifications so as to ensure that the code is faithful
to those very specifications and does not produce unintended
effects (bugs). The contracts will cover mutual obligations (i.e.
preconditions), benefits (i.e. postconditions), and consistency
constraints (i.e. invariants) [12]. This principle is especially
applicable in large modular systems with multiple levels of
abstraction, such as a framework for implementing GAs.

B. The Advantage of Using DbC in this Framework

Two of the core design principles of the Python program-
ming language are:
1) Almost all expressions that a programmer tries to
compute must be computed in some meaningful way.
2) All error reporting and tracebacks should be meaning-
ful in order to help a programmer better debug their
program. In particular, core-dumps and crashes should
be avoided.

In most cases, these are very desirable principles in a program-
ming language. However, when working with GAs, where even
simple off-by-one errors can cause individual solutions in a
population to leave the solution space and where mutation and
crossover operations are probabilistic, bugs become difficult
to reproduce and traditional step-through debugging becomes
infeasible (except in a small subset of the program’s functional
body). While this error reporting explains why the GA may
crash, it does very little to reveal the real source of the
error (for example, it may be clear that two variables of very
different data types may not be added together, but the bug
that causes either variable to be of that different data type is
not identified). Thus, whereas the error messages may be well

written for most other algorithms, they are rendered far too
cryptic to help debug a GA.

Further, due to the amount of data that a GA works with
on the stack, traditional print-debugging (or logging) would
also be infeasible as the signal-to-noise ratio in the debug logs
would be too low to be useful to a developer.

One particularly difficult bug was found to be caused
by mistyping if a>b: a,b = b,a as if a<b: a,b
= b,a in the crossover function for the GA solving the
TSP. This had the effect of causing the following error,
mid-evolution: IndexError: pop from empty list.
This is because the correctly implemented crossover function,
despite implementing its specification accurately, made certain
assumptions that were incorrect. These assumptions were
incorrect due to the aforementioned mistyping. However, the
raised IndexError does not provide any information as to
the source of this error which causes the developer to be at a
loss for where to start the debugging process. Note that such
constraint checking goes beyond type checking of variables.
For example, it could be argued that using DbC in this
framework simply adds strong typing to the GA code written
in the python programming language; such an argument is
incomplete. The use of Dbc does allow for strong typing of the
GA code. However, even with a strongly typed language (such
as Java or C), semantics about an object aren’t checked by the
typing mechanism. For example, in a GA to solve a TSP of 52
cities, a valid chromosome is an array that encodes 52 cities (as
mentioned in III-A). While a strongly typed language would
enforce a that chromosome is an array, it does not validate that
the array contains a permutation of {0,1,2,...,51}. Enforcing
such constraints set by the specification makes DbC a useful to
an evolutionary algorithms framework, as it allows a developer
to catch bugs at the point of occurrence, rather than the point
of program failure (software crash, core dump, etc).

While other frameworks for creating evolutionary algorithms
in python do exist [6], [7], [8], the herein presented software
package is the only one that incorporates DbC in order
to optimize the development time for a new evoilutionary
algorithm.

In general, the application of DbC enforces the constraints
for all classes and functions in code. These constraints are
typically developed as part of the formal specification for
that class or function during the design phase of the software
development cycle. If and when a constraint is violated by
a section of code, the contract checker (which is part of
the DbC framework) raises an error which causes a software
crash if left uncaught. This raised error contains a message
indicative of which constraint has been violated, so that the
developer may inspect the relevant section of code and debug
it appropriately. It is important to note that such errors are
raised as a result of a violation of the constraints set forth
by the software design specifications; these are different from
errors raised by the Python interpreter, which are typically
due to syntax errors or errors pertaining to the semantics of
the data structures used in the code. For example, a feasible
chromosome to be used in the GA for the TSP is required to be
a permutation of {0, 1,2, ..., 51}. If a buggy crossover function
returns a chromosome that is not such a permutation, the

Python interpreter will still be able to perform computations
on it without raising any errors, but it would lead to erroneous
results at the end of a run of the GA. Such a violation would
cause the DbC framework to raise an error with a message
indicating that the requirement that the product of crossover
be a permutation of {0,1,2,...,51} has been violated. This
would cause the evolutionary simulation to crash, if the error
is not explicitly caught and handled.

Finally, assuming that the GA runs without any errors, if the
end result of a run of the GA is unfavorable or unexpected,
it is unclear as to whether this divergence in expectations was
caused by the stochastic nature of evolution (and suboptimal
parameters thereof) or by faulty programming logic. As a
result, implementing contracts for each of the functions in
this framework allows programmers to catch errors in the
programming logic early, trace the error to the buggy function
in the program, and eliminate programming errors as the
reason for unexpected results at the completion of a run
of the GA (assuming that the correct contracts have been
implemented).

V. DBC FRAMEWORKS FOR PYTHON

In order to implement DbC to this GA framework, two
packages were evaluated. These packages are reviewed in this
section.

A. PyContracts

PyContracts is a DbC package that allows a programmer
to annotate functions with contract expressions. The syntax
of PyContracts closely follows the standard Python ReSTful
documentation [13]. This makes the documentation itself serve
two purposes:

1) the documentation for the function, which can then be
automatically generated into official documentation by
software such as Sphinx [14]

2) the contract expressions for DbC.

For example, the contract expressions in algorithm 1 for a
function that multiplies two matrices[13] denotes that:

1) The input parameter a is a nested list of dimen-
sions M rows and N columns, where M and N are positive
numbers.

2) The input parameter b is a nested list of dimen-
sions N rows and P columns, where P is a positive

number.
a) This ensures that a and b are of compatible
dimensionalities.

3) The function returns an array of M rows and P columns.

Note however, that the set of contracts for this function
neither mentions anything about the values of the inputs
remaining unchanged over the execution of the function;
nor provides a way to check this. In fact, PyContracts does
not allow developers to write contracts about the values of
variables before the function is run, to be checked after the
execution of the function [15].

Upon further investigation, it is clear that PyContracts does
not save variables on the stack at different points in time

Algorithm 1 Contracts for a Matrix Multiplication Function
in PyContracts

1 @contract

2 def matrix_multiply(a, b):

3 77 Multiplies two matrices

together.
4 :param a: The first matrix.
Must be a 2D array.
5 stype a: array[MxN], M>0, N
>0

6 :param b: The second matrix.

7 Must be of
compatible
dimensions .

8 :type b: array[NxP], P>0

9

10 crtype: array[MxP]

11

during execution. This implies that it is not possible to write
contracts for post-conditions that express properties about the
values variables before and after the function’s execution. For
the same reason, it is also impossible to write contracts that
express properties of invariants.

As a result of these limitations, PyContracts is not a suit-
able DbC package for writing contracts for the generic EA
framework.

B. PyContract

PyContract is a DbC package that allows a programmer to
annotate functions with contract expressions. Although its syn-
tax is unlike PyContracts’, it does allow for the development
of richer contract expressions, making up for PyContracts’
shortcomings.

For example, the contract expressions in algorithm 2 for a
function that multiplies two matrices denotes that:

1) The input parameter a is a nested 1list of positive
row and column dimensions.

2) The input parameter b is an array of positive row and
column dimensions.

3) The number of rows in b is equal to the number of
columns in a.

a) This ensures that a and b are of compatible
dimensionalities.
4) The function returns an array of M rows and P columns.
5) The inputs are unchanged

In addition, PyContract also allows for the expression of
class invariants, thus overcoming another one of PyContracts’
shortcomings. These are expressible with the inv declaration
in the contract expressions along with referencing self.
However, there is a limitation to PyContract’s ability to express
invariants in functions. For example, it is not possible to
express contracts about loop invariants whose expressions

Algorithm 2 Contracts for a Matrix Multiplication Function
in PyContract

Algorithm 3 Contracts for the Crossover function for the
Traveling Salesman Problem

1 def matrix_multiply(a, b):
2 *’7 Multiplies two matrices
together.

3 pre:

4 isinstance (a, array)

5 isinstance (b, array)

6 len(a) > 0

7 len(al0]) > 0

8 len(b) == len(a[0])

9 post:

10 __old__.a == a

11 __old__.b ==

12 isinstance (__return__, array
)

13 len(__return__) == len(a)

14 len(__return__[0]) == len(b
[0])

15

contain variables that are not class variables, but are instead
local to the scope of the function itself. In order to express such
invariants in this GA framework, a hybrid approach using both
PyContract and assert statements native to Python was used.

As previously stated, the DbC implementation for this GA
framework is a hybrid of PyContract and assert statements
native to the Python programming language. For example, the
crossover function described in section III-D has the contracts
shown in algorithm 3 (explained in table V-B).

Notice that there are no contracts that express invariants
in the PyContract syntax. This is because contractual invariant
clauses may express invariants that only refer to class variables.
This does not include variables that are not bound to a defined
class but are still within the local scope of the function for
which the contract is written. Therefore, loop invariants that
refer to loop counters cannot be checked using PyContract.
As a result, the second part of the hybrid implementation of
contract checking uses assert statements native to Python
to enforce invariants which express properties of non-class-
variables within the local scope of the function. For example,
contractual loop invariants are expressed in algorithm 4.

These loop invariant contract expressions check to ensure
that the invariant is True and the hypothesis guard is False in
every iteration of the while-loop.

It is important to note that GAs themselves usually have
a long runtime. Furthermore, contract checking implies that
every time a function is called, the pre-conditions, post-
conditions and invariants of that function are verified. In ad-
dition, checking post-conditions in this framework, especially
against values of variables before the execution of the function
requires making a copy of the memory stack before each

SFor a comprehensive list of contracts used in the GA to solve the TSP,
consult the documentation [5]

1 def injectionco(pl, p2):

2 o

3 pre:

4 isinstance (pl, list)

5 isinstance (p2, list)

6 len(pl) == len(p2)

7 sorted(pl) == range(len(pl))

8 sorted(p2) == range(len(p2))

9

10 post[pl, p2]:

11 pl == __old__.pl

12 p2 == __old__.p2

13 post:

14 isinstance (__return__, list)

15 len(__return__) == len(pl)

16 id(__return__) not in [id(pl
), id(p2)]

17 forall(__return__, lambda
city: city in pl and city
in p2)

18 len(set(__return__)) == len(
__return__)

19 n

Algorithm 4 Contracts for the Crossover function for the
Traveling Salesman Problem

def runTSPGA (kwargs):

while g < maxGens:
if testmode:
assert g < maxGens
assert best[l] < targetscore

~N O\ AW =

execution of that function. The result is a drastic increase in
the runtime of these functions, explicitly because of contract
checking. In order to alleviate such effects of DbC on the
GA framework, a new configuration parameter was introduced
into the framework. This parameter (named testmode) is a
boolean flag, which when set True forces contract checking
on all functions for which a contract has been written. When
this flag is set False, the contracts are not checked, allowing
the GA framework to operate at its maximal efficiency without
being interrupted by contract checking [5]. Therefore, the ideal
usage of a simulation using this framework (now augmented
with DbC) would be to run the simulation once for a shorter
period of time (evolutionary time, not realtime). Once it is
clear that all contracts are being followed, then the simulation
may be run for the required (presumably longer) period of time
without contract checking, so that it may run at an efficiency

Table 1. EXPLANATIONS OF CONTRACTS IN ALGORITHM 3

[Contract Expression [Explanation |

The next block of
indented expressions

VI. RESULTS

A GA to solve the TSP on the Berlin-52 map is used
to demonstrate the herein developed software framework, as

is equal to the number of
elements in pl

The returned list does not

id(__return__) not in in the stler;i:?nemory
[id(pl), id(p2)] location

as either pl or p2

Every element in the

. list

¢ 1 1 . returned

orat’ (__return__' N qmbda city exists in both pl and
city in pl and city in p2) 02

Every element in the

__ returned list
len(set(__return__))==
occurs exactly once
len(__return__)

that is not hindered by contract checking. While developing
the GA used to demonstrate this software package, the GA
was limited to 10 generations before it was forcibly stopped,
while running in debug mode. This is in contrast to the 200
generations the GA otherwise requires in order to converge on
a desirable solution.

A list of all contracts implemented in the GA for the TSP
developed using this framework is available in the official
documentation of the Pyvolution package [5].

pre o
are pre-ct?ndlt}ons of this explained in Sec. III. The evolutionary parameters for a run
i . . .
ol of this GA are listed in Table II. Further, Table III compares
pl is a list N R R 6 - X
L . the time required for a run of this GA® in debug mode and in
isinstance (pl, list) deb d
non-debug mode.
p2 is a list
isinstance (p2, list) Table II. BASIC EVOLUTIONARY PARAMETERS FOR A GA TO SOLVE
TSP ON THE BERLIN-52 MAP
pl and p2 have equal
len(pl) == len(p2) number of elements [Parameter [Description [Value]
_ _ maxGens Maximum number of generations before evolution is 200
pl is a permutation of forcibly stopped
sorted (pl) == range(len(pl)) {0, 1, ?* e L= 1}‘ popSize The number of chromosomes in every generation of the 1000
where L is the number in population
elements in p1 crossProb Probability of crossover between two selected 0.7
p2 is a permutation of chromosomes
sorted (p2) == range(len(p2)) {0, 1, ,2’ o L= 1}, mutProb Probability of mutation between two selected 0.05
where L is the number in chromosomes
elements in p2 tournSize Number of chromosomes competing in a tournament 4
) The next block‘of numWinners Number of winners in each tournament 2
ostipl, p21: indented expressions
P ’ ’ are post-conditions of this
function
on the Va”agles pl and Table IIl. ELAPSED RUNTIME FOR THE GA TO SOLVE THE TSP
b
pl remains unchaged as a Mode Maximum Minimum Average Standard
| == old 1 result Elapsed Elapsed Elapsed Deviation
p --01d——-P of executing this function Time Time Time
02 remains unchaged as a Debug 356.43s 339.78s 348.65s 3.98s
p2 == old p2 result Non-debug 38.37s 34.63s 35.55s 0.73s
- of executing this function
e next block of These results show that the herein developed software pack-
ost - indented expressions .
P are general age executes code slower (by a factor of approximately 9.8)
P;S;FOFdILIQHS when run in debug mode (by setting testmode to True).
of this function . . .
A Tist s retumed This is because each set of constraints for every class, method
isinstance (__return list) and function is checked before and after every execution/call
- - to that class, method or function. This allows the framework
The number of elements to alert the developer of a divergence from the formal speci-
in the returned list
len(__return__) == len(pl)

fication of that piece of code by raising an exception with a
message indicating the constraint being violated; the developer
may then inspect the relevant section of code to debug. This
is a clear advantage over waiting for such a divergence from
the specification to cause an error elsewhere in the code, as it
would not readily hint at the origin of the bug.

It is important to note that the constraints that must be
enforced are to be specified by the developer. This infers that
the specification of the constraints themselves may be buggy
which introduces a source of potential error within the flow.
Nevertheless, the expressions defining these constraints are
generally simpler than the algorithms they govern, making it
unlikely for a developer to introduce bugs in them.

Furthermore, the number of constraints the developer imple-
ments directly increases the run time of the algorithm in non-
debug mode as compared to debug mode. This is due to the
fact that each of these constraints must be checked every time
the function is called or executed. Consider for example, the
following constraints implemented in the crossover algorithm:

The constraints on lines 11 and 12 require a memcpy to
be performed before the function is called, so as to check the

SNote that these statistics were gathered over 30 runs of the GA in each
mode

Algorithm 5 Constraints in the Crossover Algorithm Table IV. EXPLANATION OF CONSTRAINTS ON ALGORITHM 5
mne onstraint unction
Li C 1 F 1
1 def injectionco(pl, p2): 4 The input parameter pl
2 o isinstance (pl, list) should be of type 1ist
3 pre: 5 The input parameter p2
4 isinstance (pl, list) isinstance (p2, list) should be of type 1ist
5 isinstance (p2, list
6 l] __(]lj ’ 2) 6 The two input parame-
en ([7) == len ([7) len (pl) == len (p2) ters should contain an
7 sorted(pl) == range(len(pl)) equal number of ele-
—— ments
g sorted(pZ) - range(len(pZ)) 7 p1l should be a permuta-
10 p()st[p] p2]' sorted (pl)==range (len(pl)) tionof {0,1,2, ..., 51}
11 p] == __Old__ X p] 8 p2 should be a perm;na—
12 p2 == __old__.p2 sorted (p2)==range (len (p2)) tion of {0, 1,2, ..., 51}
13 post: 11 pl should remain un-
14 isinstance (__return__, list) pl == __old__.pl changed by the crossover
_ - - algorithm (presented in
15 l'en (__return__) == {en (1?1) Section T1-D)
16 id(__return__) not in [ld(p] 12 p2 should remain un-
) , id (p2)] p2 == old__.p2 changed by the crossover
17 1l t i bd algorithm (presented in
fora . (__re. urn__, lambda Section T11D)
city: city in pl and city 14 An object of type List
in p2) isinstance (__return__ ,list) should be returned
18 len(set(__return__)) == len(15 The returned list should
__return__) Jen (return y==len (pl) contain as many ele-
19 e - - P ments as does pl
16 The returned list is a

values of pland p2 before and after execution. Each of these
are O(n) operations for a chromosome enconding a tour of
n cities. On the other hand, the constraint on line 17 checks
that every city in the tour encoded by the returned child of
crossover exists in both parents. This requires O(n?) time, as
the in operator performed on a 1i st compares every element
in the list to check if the required element exists in the list.
As this is performed n times (once for each element in the
returned list), and each time this is performed, it is performed
on two lists (pl and p2), which takes O(n) time by itself,
this constraint requires O(n?) time to check.

VII. FUTURE WORK

Due to the large difference in runtime of the algorithm
implemented using this framework in debug mode and non-
debug mode (i.e. by setting testmode to True or False
respectively), it would be beneficial to implement a static
contract checking model as has been done in Java [16] in
order for the checking to not influence the runtime of the code.
However, this is fairly infeasible without restricting the usage
and usability of Python as it is a dynamically typed language.
Therefore, the necessity to check the contracts at runtime is
not eliminated.

However, with the advent of just-in-time compilers, it might
be feasible to perform contract checking only when it is
predicted to be necessary , thus offering a reduction in the
runtime of an algorithm implemented using this framework.

new object, occupying a
space in memory that is
not correspondent to pl
or p2

17 Every element in the re-
turned list is present in

id (__return__) not in
[id(pl), id(p2)]

forall (__return__
lambda city: city in pl and both p1 and p2
city in p2)
18 There are no repeted ele-

len (set(__return__)) == ments in the returned list

len(__return__)

VIII. CONCLUSIONS

It is clear that the herein developed software package, offers
a reasonable improvement in the time required to develop
evolutionary algorithms due to the augmented diagnostic ca-
pabilities that it affords (as explained in Section VI). However,
this is at the cost of a slower elapsed time per run of a
simulation, as can be seen in the data presented in Table III.
Ultimately, if the developer is satisfied that the code is bug-
free after having run the simulation in debug mode enough
times, then the contract checking may be disabled (by setting
testmode to False) and executing the code at the full speed
otherwise afforded by Python, a speedup factor of 9.8 in the
case of the GA solving the TSP. Note that this speedup is not
constant, but is dependent on the number of constraints being
enforced.

[7]

[8]

[9]

REFERENCES

N. A. Barricelli, “Esempi Numerici di processi di evoluzione,” Metho-
dos, 1954.

J. H. Holland, “Adaptation in natural and artificial systems, University
of Michigan press,” Ann Arbor, M1, vol. 1, no. 97, p. 5, 1975.

G. van Rossum, “Guido van Rossum on the History of Python,” San
Francisco, 2011.

J. Webb, “pycontract,” 2010.

A. Panchapakesan, “Genetic 1.1 documentation,” 2012. [Online].
Available: http://packages.python.org/Pyvolution/settings.py.html#fields
F. A. Fortin, “deap.” [Online]. Available: https://pypi.python.org/pypi/
deap/0.9.1

C. S. Perone, “Pyevolve,” 2009. [Online]. Available: https://pypi.
python.org/pypi/Pyevolve/0.5

M. Khoury, “pySTEP,” 2009. [Online]. Available: https://pypi.python.
org/pypi/pySTEP/stable1.20

G. A. Jayalakshmi, S. Sathiamoorthy, and R. Rajaram, “A hybrid
genetic algorithmaATa new approach to solve traveling salesman prob-

lem,” International Journal of Computational Engineering Science,
vol. 2, no. 02, pp. 339-355, 2001.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Affenzeller and S. Wagner, “SASEGASA: A new generic parallel
evolutionary algorithm for achieving highest quality results,” Journal of
Heuristics, vol. 10, no. 3, pp. 243-267, 2004.

W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, “Genetic
Programming: An Introduction: On the Automatic Evolution of Com-
puter Programs and Its Applications (The Morgan Kaufmann Series in
Artificial Intelligence),” 1997.

J.-M. Jazequel and B. Meyer, “Design by contract: The lessons of
Ariane,” Computer, vol. 30, no. 1, pp. 129-130, 1997.

A. Censi. (2012) PyContracts. [Online]. Available: http://andreacensi.
github.com/contracts/

—— (2012) PyContracts 1.5.0 documentation. [Online]. Available:
http://andreacensi.github.com/contracts/#decorating-a-function

Need help with PyContracts. [Accessed: 5 Dec,
2012]. [Online]. Available: http://www.reddit.com/r/Python/comments/
11szm3/need_help_with_pycontracts/c6ph64p

Escher Technologies Limited, “Perfect Developer.” [Online]. Available:
http://www.eschertech.com/products/perfect_developer.php

